

"New Mechanisms of Solid Phase Extraction to Improve Your Analytical Results"

UCT • 2731 Bartram Road • Bristol • Pennsylvania 19007 • USA • 800.385.3153 • 215.781.9255 • Fax: 215.785.1226 • www.unitedchem.com

Types of Sorbent-Analyte Interactions

- Polar
- Non-polar
- Ion-exchange
- Covalent
- Copolymeric

Polar Extractions

- Also called hydrophilic or normal phase
- Unequal distribution of electrons
- Involves hydrogen bonding, pi-pi and dipole/dipole interactions
- Sorbents silica, diol, diethylamino, cyanopropyl
- Applications lipids, oil additives, carbohydrates, phenols. oil soluble vitamins
- Analytes amines, hydroxyls, carbonyls, aromatic rings. heteroatoms (O. S. N. P)
- Matrix non-polar organic
- . Elution solvents medium to high polarity

Non-Polar Extractions

- Also called hydrophobic or reverse phase
- Interactions between sorbent C-H bonds and analyte C-H bonds Involves van der Waals / dispersion forces
- Sorbents C2, C3,C4, iC4, tC4, C5, C6, C7, C8, C10, C12,
- C18, C20, C30 phenyl and cyclohexyl
- Applications drugs of abuse, TDM, pesticides
- Analytes protonated / neutral state, aromatics & alkyl chains
- · Matrix biologicals, water, aqueous buffers
- Elution solvents typically non-polar to moderately polar

Ion Exchange Mechanisms

- Ionic interactions occur between charged sorbent & analyte of
- · pH is manipulated to ionize analytes functional group
- · Ionic bonds are strong & retain analyte
- · Hydrophobic interferences washed away with organic solvents
- Polar interferences removed with aqueous or weak aqueous /
- Elute solvents containing stronger counterions or by changing pH
- For ionic/hydrophobic analytes, elute by simultaneously disrupting both

Cation Exchange Extractions

- Cation exchange sorbents negatively charged
 Basic analytes manipulated to carry positive charge
 Opposites attract forming strong bonds
- Benzenesulfonic acid (strong)
- Propvlsulfonic acid (strong) Carboxylic acid (weak) Applications include basic drugs, catecholamines,
- pharmaceuticals, herbicides
 - Pyrimidines (cations)
- · Basic elution solvents to neutralize analyte

Anion Exchange Extractions

- Acidic analytes manipulated to carry negative charge
- Opposites attract forming strong bonds
 Sorbents
- 1°. 2° amine Quaternary amine (strong) Aminopropyl (weak)
- · Applications include phosphates, acidic drugs, organic acids
- Analytes
- Carboxylic acids
- Matrix aqueous
- Acidic elution solvents to neutralize analyte

Copolymeric Extractions

Sulfonic acids (cations)

- · Reverse phase sorbent with cation OR anion exchange
- Acidic, basic & neutral analyte applications
- Matrix aqueous
- Selective washes
- · Elution solvents mixture of organics with acid or base
- · Superior sample clean up

pKa, pH & Ionization

% of Compound in Ionic State

Functionality	Ionization State			away fr at pKa		
Acid	Anion (-)	1	9	50	91	99
Base	Cation (+)	99	91	50	9	1

Relative Counter ion Selectivity

Larger numbers reflect greater ability of the ion to displace other

<u>Cations</u>		<u>Anions</u>	<u>Anions</u>		
Ba ²⁺ Ag ²⁺ Pb ²⁺ Cu ⁺ Kg ²⁺ Hg ²⁺ Cd ²⁺ Cd ²⁺ Cd ²⁺ CO ²⁺ CS ²⁺ Rb ⁺ Kt Fe ²⁺ Mn ²⁺ NH ⁴ Ht Li	8.7 7.6 7.5 7.2 5.3 4.9 3.0 2.9 2.8 2.7 2.7 2.6 2.5 2.5 2.5 2.5 2.5 2.19 1.0 0.8	Benzene Sulfonate Citrate I Phenate HSO ₄ CIO ₃ NO ₃ Br CN HSO BrO NO ₂ CI HCO ₃ IO3, Formate Acetate Propionate F	500 220 175 110 85 74 65 50 28 27 27 27 24 22 6.0 5.5 4.6 3.2 2.6 1.0		
	Standard cati	ion exchange counter ion			

SPE Amine Scavenger

Purification of Small Molecule Libraries by Pharmasil® Ion Exchange SPE

UCT Column Part Number: CUBCX156 Sorbent Amount: 500mg Column Volume: 6 ml

SPE TFAA Removal

Purification of Small Molecule Libraries TFAA Removal by Pharmasil® Ion Exchange SPE

$$H_2 H_2 H_2 + C - C - C - N - (CH_3)_3OH^-$$

UCT Column Part Number: CHQAX156 Sorbent Amount: 500mg Column Volume: 6 mL

SPE Metal Removal

Purification of Small Molecule Libraries Palladium (Pd) Removal by Pharmasil® Ion Exchange SPE

UCT Column Part Number: CUTAX156 Sorbent Amount: 500mg Column Volume: 6 ml

Benzondiazepines By Polar Reverse Phase

Chiral Solid Phase Extraction

Joint venture between UCT and ENS

ENS nanostructured sorbent does not require thousands of theoretical plates to get an effective separation

Chiral Enrichment of DL-Norvaline as a Function of pH Using ENS 1 mL Polar Cationic SPE Cartridges

Extraction Protocol Analyte samples were prepared at a concentration of 10 mg/mL (m/v) in 50:50 Ethanol/Water pH adjusted to values 2 through 6 extract a total volume of 1 mL analyte solution through an ENS 1mL Polar Cationic SPE cartridge. Each cartridge was then aspirated with Nitrogen to flush out any residual analyte solution. A centrifugal evaporator was used residual alialyte solution. A cellinitugal evaporator was to concentrate the samples, which were then reconstitut in 70:30 Water/Methanol mobile phase to be analyzed using the Chirobiotic™ TAG column.

Chirobiotic™ TAG 4.6 x 250 mm Mobile Phase: 70:30 Water/Methanol Flow Rate: 1.0 mL/min

HPI C

The chiral enrichment of norvaline is enhanced by lowering the pH of the extraction solvent At a low pH acids on the surface of the sorbent are not charged, and the hydrophobic amin acid side chain drives adsorption and extraction.

Chiral Chromatograph - Norvaline before and after enantioenrichment

	Retention Time		Peak Area	EE
Ī	Enantiomer 1	Enantiomer 2	Ratio	
Before SPE	2.2067	4.0192	50/50	0
After SPE	2.2508	4.3708	62/38	24

Note: The difference in peak height for the first enantiomer results from